QSP Model of Rheumatoid Arthritis

Capturing range of clinical responses to Methotrexate and anti-TNF α therapies

Tamara Ray, Madhav Channavazzala¹, Dinesh Bedathuru, Maithreye Rengaswamy, *Rukmini Kumar (rukmini@vantage-research.net) Vantage Research, http://www.vantage-research.net (1. Presenter, * Corresponding author)

1. Introduction

Quantitative Systems Pharmacology (QSP) models connect knowledge from biological interactions to observed behaviour in clinical trials, Fig 1.1¹. Mechanistic Physiological modelling is useful in answering several scientific questions related to development of novel therapies.

Rheumatoid Arthritis (RA) is a chronic Auto-Immune disease, affecting the synovial tissue as shown in Fig 1.2². The disease restricts motion in affected joints, causes pain, can severely affect quality of life. Biologic and Synthetic DMARDS are used for treatment of RA.

2. Model species and interaction network diagram

The mechanisms leading to Rheumatoid Arthritis are not fully understood, but in patients, the synovium is observed to host excessive densities of immune cells. This results in an imbalance of pro and anti-Inflammatory immune response. The main players observed in the synovium are shown below:

- Immune cells: Macrophages, B cells, Th1, CD8, T reg
- **Structural cells**: FLS, Osteoclasts, Osteoblasts, Chondrocytes
- **Pro-inflammatory cytokines**: TNFα, IL1β, IL6, IL17, IFNY, GMCSF
- **Anti-inflammatory cytokines**: IL10, TGFβ
- **Other species**: Endothelial cells, MMP, VEGF, Auto-antibodies

Model Effect Diagram

Fig 1.3 : Sample use cases for Vantage RA QSP model

The Vantage Rheumatoid Arthritis model (Vantage RA QSP model) incorporates the latest understanding of RA pathophysiology. The model is developed with MATLAB Simbiology. It captures the relevant physiological mechanisms in moderate to severe RA patients. The model has been calibrated to Methotrexate and Anti-TNFα therapies, with DAS28-CRP as the primary clinical readout at this time.

Fig 1.2² : An average joint represented in the model

Model scope, assumptions and limitations

- The model represents a single 'average' inflamed joint of a moderate-severe RA \bullet
- Subjective clinical score DAS28 in RA is calculated as a function of inflammatory cell densities and cytokine concentrations
- The model captures the disease in steady state; it does not address disease progression
- Flares are not being modelled

3. Data for model calibration: Top down and Bottom up data

Γ		Cutalinaa	Description	Def
L	Coll type	Cutakinas	Description / commonts	L

Fig 2.1a : Cytokine secretion

Fig 2.1b, 2.1c : effect of cytokines on cellular functions

Fig 2.1: The network of interactions in the synovium can be classified into A) Cytokine secretion network by cells (Fig 2.1a) B) Cytokines affecting the cell cycle (Fig 2.1b) C) Regulation of cytokine secretion by other cytokine (Fig 2.1c)

Pathways affected by therapies

Methotrexate (MTX) is an immune system suppressant used in RA to reduce inflammation

Centype	Cytokines	F/IVI/A/S	Description/ comments	Reference	Parameter Name	Descriptio
			Causes secretion of MMPs			Pacolino
FLS	IL-6	Secretion	by FLS	Yoshida et al, 2014		proliferation
				Nakahara et al. Arthritis	kg FLS Baseline	of FLS
	IL-6	Secretion	VEGF	<u>Rheum. 2003</u>	kd ELS Basolino	Apoptosis rat
					Ku_i L5_baseline	secretion rat
	IL-6	Proliferation	causes proliferation of FLS	Yoshida et al, 2014	kp_MMP	MMPs by F
			· ·	Kobayashi et al,		Baseline
				Arthrities &	kg Endo Baseline	of EC
	TNF -alpha	Proliferation	causes proliferation of FLS	Rheumatism, 1999	<u> </u>	
				Firestein et al, Journal of		
			Induces apoptosis (in	Clinical Investigation		clearance rat
	TNF-alpha	Apoptosis	absence of IFNg)	<u>1995</u>	kcl_IL6	IL6

Table 3.1 : Bottom up dashboard (Qualitative)

Type of cells	Mean/Median	Lower bound	Upper bound	Units	Reference 1
Fibrocytes Like					Krann et al, Ann
Synoviocytes (FLS)	441	35	2405	cells/mm2	Rheum Dis. 2004
T cells (all CD3+)	480	137	2013	cells/mm2	<u>Krann et al, Ann</u> Rheum Dis. 2004
					Thurlings et al, Ann
CD4	403	2	1702	cells/mm2	Rheum Dis. 2008
Th1	61	18	71	% expression	Villa et al, PLOS, 2012
Th17	2.19	0.84	5.02	% expression	<u>Villa et al, PLOS, 2013</u>
					<u>Isomaki et al,</u>
Th2	0.3		0.6	% expression	Immunoloy, 1999
Treg	19.6	15.2	24	%	Jiao et al, SJR,2007

Table 3.3 : Ranges of cell numbers in synovial tissue taken from the biopsies of RA patients

Name of Trial	Patient selection criterion	
Premier Study, 2006 ³	MTX naive	
	Inadequate response to MTX	
RA BEAM trial, 2017 ⁴	(>=12weeks of MTX)	

Table 3.4 : 'Top-down data'. Clinical trials used for calibrating the model.

5. Future directions

tor Namo	Description	Iviean	Min value	IVIAX	Unite	Primary	Reliability
	Description	value	IVIIII Value	value	Units	Reference	score
	Baseline					<u>Tolboom et al,</u>	
	proliferation rate				proliferation	Ann Rheum Dis.	
Baseline	of FLS	0.275	0.197	0.369	rate per day	2002	High
	Apoptosis rate of					Flrestein et al, J	
Baseline	FLS	3	2	4	% Apoptosis	Clin Invest. 1995	High
	secretion rate of					Chabaud et al,	
MMP	MMPs by FLS	1400	1232	1568	ng/ml	Cytokines, 2000	High
	Baseline						
	proliferation rate					<u>Seghazzi et al,</u>	
_Baseline	of EC		2500	9700	cells/well	JCB, 1999	Medium
						<u>Marino et</u>	
						al.Nephrology	
						Dialysis	
	clearance rate of					Transplantation,	
I IL6	IL6	3	2	4	hours	2007	High

Table 3.2 : Bottom up dashboard (Quantitative)

A snapshot from 'Bottom up' data Table 3.1 shows effects of tables. cytokines on cell functions. Table 3.2 shows the tabulated parameter values, their ranges and sources. Table 3.3 shows the range of cell densities observed in RA patients

4. Model simulations

The two treatments of interest are Methotrexate (MTX) and Anti-TNF α therapy Adalimumab (ADA). The dosing regimen for MTX is 20 mg Q1w and for ADA is 40 mg Q2w. PK model and parameters are taken from literature. The model is calibrated initially to match the behaviour of a representative patient, such a virtual subject is called 'Reference Virtual Subject'.

Fig 4.1: QSP model is calibrated to match the outcomes from selected clinical trials

Fig 4.2: Simulation of virtual subjects with different responses to therapies

- Next step is to create a Virtual Population to match clinical data for MTX and ADA therapies. Model validation will be performed using a previously uncalibrated therapy such as anti-IL6.
- Model can be expanded to include therapeutic pathways such as anti-IL6, anti-IL17, JAK inhibitor.
- The model can also be repurposed to other auto-immune diseases.

	RA (Joint), Current model	IBD (Gut)	Psoriasis (Skin)		
Key Immune cells	Macrophages, B cells, Th1, Th17, Tregs, CD8+	Th1, Th2, Th17, Tregs, NK cells, PMNs, Dendritic cells, CD8+	Langerhans cells, Dendritic cells, PMNs, Th17, Th1, Tregs, CD8+, Macrophages		
Clinical manifestations	Bone and cartilage destruction	Loss of barrier function	Increase in epidermal thickness		
Disease scores	DAS28, ACR	CDAI/MAYO score	PASI		

Table 5.1: A modelling view of different Auto-Immune conditions

Fig 4.3: DAS28 values for the reported average patient and simulated virtual subjects

6. References

- 1. Goldman et al, Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient's autoregulatory capacity?. Frontiers in Physiology , 225(2015)
- 2. Seyed Mojtaba et al, The correlation between rheumatoid factor and anti cyclic citrullinated peptides with gene expression of FoxP3 in rheumatoid artheritis patients. IJBMPH. Volume 1, 2018, Page 6-11
- 3. Ferdinand C. Breedveld et al, The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum, 54 (2006), pp. 26-37
- 4. Peter C. Taylor et al, Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N Engl J Med 2017; 376:652-662